Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2023-2024
Universita degli Studi di Milano

Search algorithms for planning

Matteo Luperto
Dipartimento di Informatica
matteo.luperto@unimi.it

mailto:matteo.luperto@unimi.it

Search

Setting:
* Agent
* Goal

* Problem Formulation
e A Set of Actions
e A Set of States

What we want to do?
Find a set of actions that achieve the goal

when no single action will do

Planning

Setting:

* Agent
 Goal

AN

 Problem Formulation

* A Complex Set of Actions

* Preconditions
e Effects |

* A Complex Set of States
* Propositional Statements

What we want to do?
Take advantage of the structure of a problem

to construct complex plans of actions

Search algorithms for Planning

* Search and Planning often addresses similar problems and there is
no clear distinction between them.

* On one hand, planning deals with problems where actions, states,
goals cannot be described in a compact way, to have an abstract
and high-level problem formulation.

* As an example, if the conditions can change planning methods are
more suited to adapt the plan.

* On the other hand, search algorithms are often used when it is
easier to describe the problem in a “mathematical” and compact
way.

e Overall, search and planning are deeply connected and overlapped,
and planning often requires some form of search and problem-
solving algorithms.

e Path-planning is one of those problem.

Discrete Search Problems: 8-Puzzle

7|2 | 4 1 | 2
5 6 3|14 |5
8 [3 | 1 6 | 7 | 8

* States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board

Discrete Search Problems: 8-Puzzle

7|2 | 4 1 | 2
5 6 3|14 |5
8 [3 | 1 6 | 7 | 8

Start State Goal State

* States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board
* Goal Test: if the states are equal to the goal state

* Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Search example 712]4
5 6
8|31
71214 71214 7 4 712
5| 6 5| 6 51216 5| 3
8|31 8|31 8|31 8

Expanding the current state by applying a legal action generating a
new set of states, then...

...following up one option and putting aside others in case the first
choice does not lead to a solution

State-based problem formulation

» State space defined as a set of nodes, each node represents a state;
we assume a finite state space (and discrete)

e For each state, we have set of actions that can be undertaken by the agent from
that state

* Transition model: given a starting state and an action, indicates an arrival state;
we assume no uncertainties, i.e., deterministic transitions and full observability

e Action costs: any transition has a cost, which we assume to be greater than a
positive constant (reasonable assumption, useful for deriving some properties of
the algorithms we discuss)

* |nitial state

* Goal State

Compact representation: state transition graph G=(V,E)
(We will use “state” and “node” as interchangeable terms)

Formally describing the desired solution

* In the problem formulation we need to formally describe the features of the
solution we seek

* Two (three) classes of problems:

=
Ur==n|
[l

feasibility optimality
== ElfTe [myEl = ElfT= |
Bl = —] — 1 — -— |-
[EE EE R
—]

L

/ (approximation) \

is there a path to
an exit?

If at least a path to an
exit exists, what is the
one with the minimum
number of turns?

ﬁ
J

Set of goal states, find any
sequence of actions (path)
from the initial state to a
goal state

Set of goal states, find the
sequence of actions (path) from
the initial state to a goal state that
has the minimum cost

Problem example

Consider a agent moving on a graph-represented environment:
e States: nodes of the graph, they represent physical locations

* Edges: represent connections between nearby locations or, equivalently,
movement actions

* Initial state: some starting location for the agent

Desired solution:

* Goal state(s): some location(s) to reach, ...
Find a path to the initial location to a goal one

Example: going home from the Celoria 18 with METRO

e NPT T M v

;5— = s g % e wurvu s: % L) B 2
[| fi yiaValiazze S 9 $ B ‘Milano Lambrate
Via Vallazze | Lambrate Fsmm 2
a8 Upcycle Milano \
9 Bike Café < Va =) ,
ttoria Bertamé Q) = p 9/ < {
Pam Milano Bazzini g o Fompe, o <
' 7 = 5 z
‘ 2 : < a8 ¢
i Vi ‘ scn & ¢
2 Oasi Village @ . o S : g '
2 < N 8 :
g n Piazza Carlo 3 Mio
8 Centro Teatro Attivo a s Donegani S
3 (o) S
o Vietnamonamour g * 3
5 i 2 llPostino B
9/60, S Ristorante e B&B g Supermercato 9 o
< 9/7& v 2 Carrefour Express Q a
; ‘9&@0 Via Giuseppe Zanoia * é v e a
= H o
3 = 8 9 Piola Milanosport - Centro via Alfonso €O
3 : Balneare Romano A
3 a
v 1 Avis Regionale 9 B QBI”IfICiO Lambrate Golgi
Supermercato 9 QMTM teatro Leonardo Lombardia 4
Carrefour Market B Vi EdoardoBonardi gy 3 (=] via Corfu Q Trattoria Sole
9 e "R,
’ ; a Zero-Gravity 9
o® Q9 2
'%%’op /'““:“’ . \ Politecnico Via Carlo Pascal
%, / i Piazza di Milano L !
”/ < B]
s % Leonardo 9 Crespi Sport Village
; Via Olindo Guerrini % 4“\‘””':'-" déi\/inCi» Campo SpOﬂiVO
3 S = Mario Giuriati <
g o -
-] 8 g
: P & e o s
MOBA Milano O a Universita Degli Studi 3
a Di Milano... 2
QGrano e Caffe 9 o
a = . - : ®
J Dipartimento di 9 g
< Informatica...
Fantamagus Q E)
I S Fondazione IRCCS 9
7 3 Istituto nazionale dei...
8 Gp,/% g 9 MOGLYNET QIPSAR Am

Dipartime(Gnnale

Example: going home from Celoria

R e il

eyl

18 with METRO

- - 3 ror v ® Iveter vwivu 9 w 3 EX 1
, i ¥ E \& AN = NN\
q \ia Valiazze 2 $ _~Milano Lambrate
Via Vallazze - Lambrate Fsmm (]
a Upcycle Milano ‘
9 Bike Cafe <) Via g) = 3]
oria Bertame Q ! P s 9l = .
., btk Pam Milano Bazzini g a8, O’Ombw/ o <
- E‘J E 4 fi [
< Oasi ViIIage@ 308 3 a :
? ' § Mio
8 Centro Teatro Attivo 3
% (@ Vietnamonamour _ 5
% g Ristorante e B&B Supermercat09 Il Postino EEI
< Carrefour Express 0 a
5 65‘30 : Via Biuseppe Zanoia - - * a
3 = o 9 Piola Milanosport - Centro
3 Balneare Romano a8
= y
B R
4 ate 9 B (W sirificio Lambrate Golgi
Supermercato 9 @MTM teatro Leonardo i 1
Carrefour Market . Q Trattoria Sole
Q g
} Zero-Gravity 9
o® "/o
peoo,o == ~“-\--,_ \ Politecnico Via Carlo Pascal
‘% ’ N Piazza di Milano 9 ! !
, I<| B ;
> = ! leonardo Crespi Sport Village
(4] i 2 = 0
g Via Olindo Guerrini. 0 d? Vinci Campo Sportivo
3 S = Mario Giuriati <
c [o
2 [Ta] - Q
8 5 (B o 3
B : a v 9 s
MOBA Milano Q a Universita Degli Studi 3
a 9 Di Milgno... g
OGrano e Cgffe J)
11 S Dipartimento di Q g
g Informatica...
roomonss @ :
antamagus =
I 9 (g_’ Fondazione IRCCS
7 3 Istituto [nazionale dei...
LAl | g LYNET @ Psar Am

4

Dipartime(Gnnrale

Example: going home from Celoria 18 with METRO

Goal

Goal

Start

Problem example

Consider a mobile robot moving on a grid environment:
e States: cells in the map, they represent physical locations

* Edges: represent connections between nearby locations or, equivalently,
movement actions

* Initial state: some starting location for the robot

Desired solution:
e Goal state(s): some location(s) to reach

* Find a path to the initial location to a goal one

Problem Example

,,,,,,,

-l -w“

- - HEN J | Il-
Illlj “ Ill-

lllj HEEEE

(FERY

—
A
8

&
E

=

:

1

o
~
wn
a -
=]
=
1]
B 4
<
(=}
o

Problem Example < }

,,,,,,,

—T111
— .m.w“

En
-l_
- - HEN J | Il-
Illlj “ Ill-

 m— f—
m— ET

e & |
. = B
dhdR 4

»
@ o\
w &=
— B
@ 8
P! =
e &
@
g8s
1

A solution

length: st.l(me
| timez3.080!

operations: 709

And here? Changing a few tiles, different solution

| length: 8504
| time: 0.645
operations: 770

One problem, many possible ways of representing it

e s v : R R ot 4 E

' 1 Milano Lambrate
Lambrate Fsm[[]
pcycle Milano
a Q Bike Café | a
Pam Milano Bazzini = >
5 a \
! OaciVillano [:' :

The quality of the solution and the choice of algorithms rely on a proper
problem formulation, with proper level of abstraction needed for the task
(not too many or too little details)

v ™
VBalneare Romano &)
B
Avis Requalpo a8 Birrificio Lambrate G
Supermercato o QMTM teatro Leonardo Lombardia
Carrefour Market = tt
. B Ve = ‘
a a8
a8 Zero-Gravity 9
Politecnico
Piazza di Milano
oS 9 Crespi Sport Village
- da Vinci Campo Sportivo
- Mario Giuriati &
= a a
VDA IVBG a8 Universita Degli Studi
@) o Di Milano
1 : Dipartimento di 9
Informatica..
B
Fantamagus o
Fondazione IRCCS
Istituto nazionale dei
9 MOGLYNET OIPSAR Am

Dipartime(&Gnanale

One problem, many possible ways of representing it

e v v s e v w ‘
E 5]
Lambrate Fsmm (

)i N Pam Milano Bazzini = o
8 Ce
< Oasi Village Q a8 :
Mio
Centro Teatro Attivo
2 1onamou
R eeB | Pc I (Z] °
LN % 5]
/7 o -
"8 g CRioe - ® a
So . eZa - =)
a8 g Q Piol Milanosport - Centro
Balneare Romano a b
°
Bi ambrate
Supermercato 9 QMTM teatro Leonardo o
Carrefour Market
g o
Zero-Gravity 9
Politecnico
Piazza di Milano
" [}
5 eana do Crespi Sport Village
ud da Vinci Campo Sportivo
E Mario Giuriati
& °
ita Degli Studi
a Di Milano..
1 Dipartimento di
Informatica..
Fantamagus o i
o Fondazione IRCCS
Istituto nazionale dei. °
L MQ@SLYNET & PsAR Am

Dipartime(Gnanale

Mulm;no Lambrate ‘7 What type Of
o representation?

With which granularity?
Shall | represent other
nearby stations (Loreto,
Udine?)

Shall | represent also the
bus stops?

Trams?

Main central stations?

All Milan city map?

Shall I represent all crossings
and traffic lights?

How about directions inside
the campus?

How about directions inside

the building?

One problem, many possible ways of representing it

- - H
B Milaijo Lambrate What type Of
- ScyhicNI : A representation?
Pgm Milgno Bagzini U : o Gr|d map?
d a ; . .
5! * How big the grid?
< OgsiVillage g/ a
o | S vwd * Which distance?
o I R I T i Sonegen * Euclidean
b diat te e|B&F | % [:]
oS il —Supprmerdato & * Manhattan
< i (arrefolir Express A . 5
— 13 = Frota o Tanosport - Centro =) .
Bplnearg Romano (& o Sha“ | represent a” CI’OSSIngS
Avis|Regior aleo [ﬂu ficio Lbmbrate Gold and trafﬁc ||ght5?
o e P 4201 T o e « How about directions inside
i = - : h 2 (shall |
G o e the campus? (shall | use a
Polftecnido different grld size?)
T e r— i Mitanc S erefpr Syt a « How about directions inside
d d g
3 L RGP IS the building?
8 0 5
\ Mila . a V Univefsita Degli Stydi
i &) O Di Mikano
S SIS RRTIRE: =
1 . Diplartimepto di Q
Ipformdtica
Conjpmadus o Fornydaziorje IRC(S 9
Stutojnaziorjale ae 9 MOGLYNET O|PS‘+R -
Dinartimedty 1

Problem specification

* How to specify a planning problem?

* First approach: provide the full state transition graph G (as in the previous
example)

* Most of the times this is not an affordable option due to the combinatorial
nature of the state space:

C> I
o ¥
Lo oo
D= 1€
> @
Co o
Ce W

E| « Chess board: approx. 10%/ states

S« We can specify the initial state and the transition
function in some compact form (e.g., set of rules to
generate next states)

idii : “ ”

sove| ®* The planning problem “unfolds” as search progresses

E p»
$

ddd
ENL

 We need an efficient procedure for goal checking

General features of search algorithms

A search algorithm explores the state-transition graph G until it discovers the
desired solution

» feasibility: when a goal node is visited the path that led to that node is
returned R.0.B.0.T. Comics

» optimality: when a goal node is visited, if any other
possible path to that node has higher cost the path
that led to that node is returned

Given a state and the path followed to get there, the next node
to explore is chosen using a search strategy

"HIS PATH-PLANNING MAY BE

It does not suffice to visit a goal node, the algorithm has to SUB-ORLINAL, BUT'LE"S 0% PLAIE."
reconstruct the path it followed to get there: it must keep
a trace of its search

Such a trace can be mapped to a subgraph of G, it is called search graph

how to evaluate a (search) algorithm?

* We can evaluate a search algorithm along different dimensions

Completeness:
If there is a solution, is the algorithm guaranteed to find it?

e Systematic:

If the state space is finite, will the algorithm visit all reachable state
(so finding a solution if a solution exists?)

Optimality:

does the strategy find an optimal solution?
Space complexity:

How much memory is needed to find a solution?
Time complexity:

How long does it takes?

(The above criteria are used to evaluate a broader class of algorithms)

Soundness

e Optimality: does the returned solution lead to a goal with minimum cost?

Maybe we are not always looking for the optimal solution...

...for some problems, we may look for other features

Soundness: If the algorithm returns a solution, is it compliant with the desired
features specified in the problem formulation?

* Example:
* Feasibility: does the returned solution lead to a goal?
* Optimality: does the returned solution lead to a goal with minimum cost?

(We may need other features from the algorithm e.g., approximation)

Completeness and the systematic property

If a solution exists, does the algorithm find it?

 Typically shown by proving that the search will/will not visit all states if given
enough time - systematic

* If the state-space is finite, ensuring that no redundant exploration occurs is
sufficient to make the search systematic.
* If the state space is infinite, we can ask if the search is systematic:
* If there is a solution, the search algorithm must report it in finite time
* if the answer is no solution, it’s ok if it does not terminate but ...

... all reachable states must be visited in the limit: as time goes to infinity, all
states are visited — all reachable vertex is explored - (this definition is sound
under the assumption of countable state space)

Visual example

is there a
route from
IN to OUT?

S1mE

niu
T
HIE
| =
=)

Visual example

= ||L J,l
. | |
m J i
r L
Complete / Systematic - | r I~ C
i==nll5 —
el EEIES
| =11in -
T
- (-
m l E lI _Lll_ J—

» Searching along multiple trajectories (either concurrently or not), eventually covers all
the reachable space

Visual example

am)
n

Not complete / Not systematic

ﬂL||J,1

J (o

[L

— L_J_ _L
=2 |[[| == |

— 1 — [~ __

(]| [= Ee=—rl)

» Searching along a single trajectory, eventually gets stuck in a dead end (or find a solution

if we are lucky)

Space and time complexity

e Space complexity: how does the amount of memory required by
the search algorithm grows as a function of the problem’s

dimension (worst case)?

* Time complexity: how does the time required by the search
algorithm grows as a function of the problem’s dimension (worst
case)?

 Asymptotic trend:
* We measure complexity with a function f(n) of the input size
* For analysis purposes, the “Big O” notation is convenient:

A function f(n) is O(g(n)) if 3k > 0,ng such that f(n) < kg(n) for n > ng

* An algorithm that is O(n?) is better than one that is O(n°)
 If g(n)is an exponential, the algorithm is not efficient

Running example

* To present the various search algorithms, we will use this problem instance as our
running example

State-transition graph:

Initial state: @

Desired solution: any path to goal state @

* |t might be useful to think it as a map, but keep in mind that this interpretation does not
hold for every instance

Search algorithm definition

* The different search algorithms are substantially characterized by the answer they
provide to the following question:

____________ _ Given what | searched so far,
where to search next?

(search strategy)

 The answer is encoded in a set of rules that drives the search and define its type, let’s
start with the simplest one

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

A

/" \

B F
"\
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

/" \

B F
"\
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

/" \

B F
"\
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A

/" \

B F
"\
®C D

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now, lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ /\
B F B
/" ./
®AcC D >~ C

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ /\
B F B
/" ./
®AcC D >~ C

A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

A dead end stopped the search, DFS seems not complete. Can we fix this?

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

* A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order)

* A dead end stopped the search, DFS seems not complete. Can we fix this?

* Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Depth-First Search (DFS)

A
/\ /\
B F B
N VN
&AcC D - C

F
A Depth-First Search (DFS) chooses the deepest node in the search tree
(How to break ties? For now lexicographic order) G
A dead end stopped the search, DFS seems not complete. Can we fix this?
©E

Let’s endow our DFS with backtracking: a way to reconsider previously
evaluated decisions

Solution: (A->B->D->F->G->E)

Depth-First Search (DFS) and Loops

* DFS with loops —> non systematic / complete
« We want to avoid loops on the same branch
(loops are redundant paths)

Depth-First Search (DFS)
* DFS with loops removal and BT is sound and complete (for finite spaces)

* Call b the maximum branching factor, i.e., the maximum number of actions
available in a state

e Call d the maximum depth of a solution, i.e., the maximum number of actions
in a path

* Space complexity: O(d)

 Time complexity: 1 + b+ b% + ... +b% = O(b?)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Breadth-First Search (BFS)

Solution: (A->F->G->E)

Breadth-First Search (BFS)

A
/\F
B
PN N
&AC D D G

Solution: (A->F->G->E)

* A Breadth-First Search (BFS) chooses the shallowest node, thus exploring in a level-
by-level fashion

* It has a more conservative behavior and does not need to reconsider decisions
* Call g the depth of the shallowest solution (in general ¢ < d)

* Space complexity: O(b?)

 Time complexity: O(b?)

Redundant paths

 Both DFS and BFS visited some nodes multiple times (avoiding loops prevents
this to happen only within the same branch)

* In general, this does not seem very efficient. Why? /\

B\ . F
N 7 F/' G
/\\\ ////\ /
/
®C D \—\::/—/—/— D \\\ //' G //
N NN G’
F”"G->B--G/ D OF

©E

* |dea: discard a newly generated node if already present somewhere on the
tree, we can do this with an enqueued list

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

DFS with Enqueued List

* Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

* Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

DFS with Enqueued List

* Node F ha already been “enqueued”
on the tree, by discarding it we
prune a branch of the tree

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

BFS with Enqueued List

Implementation

* The implementation of the previous algorithms is based on two data structures:
A queue F (Frontier), elements ordered by priority, a selection consumes the
element with highest priority
 Alist EL (Enqueued List, nodes that have already been put on the tree)

 The frontier F contains the terminal nodes of all the paths currently under exploration on
the tree

A
B Fo/
“ /\ ///
Y C D _-7

-
-
-
N e - ———

* The frontier separates the explored part of the state space from the unexplored part
* In order to reach a new unexplored state, we need to pass from the frontier (separation

property)

Implementation

If Fis implemented as a

LIFO (Last In First Out)
gueue we have a DFS

initialize F with the no select from F . .
starting node and extend If F is implemented a
FIFO (First In First Out)
gueue we have a BFS

yes

any new \

no

path?
yes .
add to F]
.
solved <«—vyes
p
add to
enqueued list
The goal check is ! L
performed as
soon as a node is
already
generated enqueued? no

yes ‘(discard]

Search for the optimal solution

Now we assume to be interested in the solution with minimum cost (not just any
path to the goal, but the cheapest possible)

To devise an optimal search algorithm we take the moves from BFS. Why it seems
reasonable to do that?

We generalize the idea of BFS to that of Uniform Cost Search (UCS)

BFS proceeds by depth levels, UCS does that by cost levels (as a consequence, if costs
are all equal to some constant BFS and UCS coincide)

Cost accumulated on a path from the start node tov: g(v) (we should include a
dependency on the path, but it will always be clear from the context)

For now let’s remove the enqueued list and the goal checking as we know it

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

OA

Uniform Cost Search (UCS)

OA

6 F

Uniform Cost Search (UCS)

12C 8D

Uniform Cost Search (UCS)

12C 8D 9D 11@G

Uniform Cost Search (UCS)

12C 8D 9D 11@G

Uniform Cost Search (UCS)

9D 11@G

A\

11 F 12G 12B 13G@G

N TN
12C 8D
N\

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

/\
PN TN

Uniform Cost Search (UCS)

/\
PN TN

11 F 12G 12B 13G 15D 14E

.

16G 15E 19C

Uniform Cost Search (UCS)

0A
5B 6 F
/\ /\
12C 8D 9D 11G

A A NN

11 F 12G 12B 13G 15D 14E

| |

16G 15E 19C 16E

Uniform Cost Search (UCS)

0A
5B 6 F
/\ /\
12C 8D 9D 11G

N N

11 F 12G 12B 13G 15D 14E
I ©

16G 15E 19C 16E

by

Uniform Cost Search (UCS)

/\
PN TN

11 F 12G 12B 13G 15D 14

I ©

16G 15E 19C 16E

* Have we found the optimal path to the goal? In this problem instance, we can answer
yes by inspecting the graph

* How about larger instances? Can we prove optimality?

e Actually, we can prove a stronger claim: every time UCS selects for the first time a node
for expansion, the associated path leading to that node has minimum cost

Optimality of UCS

Hypotheses:

1. UCS selects from the frontier a node V that has
been generated through a path p

2. pisnotthe optimal pathtoV

Frontier

Given 2 and the frontier separation property, we

.
. .
. .
........

know that there must exist a node X on the frontier, \ K
generated through a path p’; that is on the optimal \\ L
path p’#p to V; let assume p’ = p’; + p’, “”p/2

c(p’) = c(p}) + c(py) < c(p) since, from Hp, p’ is optimal
(1) (p}) + c(p3) < c(p) since costs are positive

/

1) <

/
C\P1
(p1) < c(p) X would have been chosen before V, then 1 is false

C <
C <

Optimality of UCS

If when we select for the first time we discover the optimal path, there is no reason to
select the same node a second time: extended list

Every time we select a node for extension:
* |f the node is already in the extended list we discard it

* Otherwise we extend it and we put it the extended list

* (Warning: we are not using an enqueued list, it would actually make the search not
sound!)

UCS with extended list

UCS with extended list

OA

UCS with extended list

OA

6 F

UCS with extended list

12C 8D

UCS with extended list

12C 8D 9D 11@G

UCS with extended list

12C 8D 9D 11@G

UCS with extended list

12C 8D 9D 11@G

UCS with extended list

12C 8D 9D 11@G

UCS with extended list

11 F 12@G 15D 14E

UCS with extended list

/\
PN ST

11 F 12@G 15D 14E

UCS with extended list

11 F 12@G 15D 14E

UCS with extended list

OA

/\
/\ %\

12C 11 QG
®
C‘&/@'\ /"N
11 F 12@G 15D 14 E
©

* Thanks to the extended list we can prune two branches

Implementation

yes
initialize F with the}
> ?
{ starting node J F empty* no~>[select from F]

discard
add all new
paths to F
. 3 J
F is implemented as a N
_ H 1 extend, add to
cost-sorted (increasing) xtend, ada solved
list queue . /

The goal check is done when
the node is selected (not
when is generated)

e Question: is this search informed?

Discrete Search Problems: 8-Puzzle

7|2 | 4 1 | 2
5 6 3|14 |5
8 [3 | 1 6 | 7 | 8

Start State Goal State

* States: location of each digits in the eight tiles + blank one
* Initial State

* Goal State

e Actions: Left, Right, Up, Down

* Transition: given a state and an action, the resulting board
* Goal Test: if the states are equal to the goal state

* Cost: each movement costs 1, the lowest number of tile move the
lowest the cost

Discrete Search Problems: 8-Puzzle

7|2 | 4 1 | 2
5 6 3|14 |5
8 [3 | 1 6 | 7 | 8

Start State Goal State

* Question: are all states equal?

Example: going home from the CS department with METRO

. — e AT T I M Y D T IVOLET VWV 9 v 3 ; n
© o = -)

The cost to reach the two nodes starting from the initial node is the same; but
are the two nodes equally promising to reach the goal?

< Oasi Village Q 1o B s a
: ab ' Mio
Centro Teatro Attivo B z 9
Vietnamonamour 2
% S Y Ristorante e B&B lPostine B
1N a
5 S 8 OF B
= he) At i ireens - =
8 a g 9 Piol Milanosport - Centro e
3 Balneare Romano a
W Birrificio Lambrate Golgi
Supermercato
Carrefour Market ratt
a
Zero-Gravity 9
Politecnico 2 Carlo Pasca
Piazza di Milano
<
5 leonardo Crespi Sport Village
d da Vinci Campo Sportivo
E Mario Giuriati
N0BA Mil Universita Degli Studi =
a8 Di Milano..
(Caffe -
B Dipartimento di 9
Informatica..
B
Fantamagus o
I Fondazione IRCCS
Istituto jnazionale dei °
MQGLYNET
a QIPSAR Am

Dipartime(Gnnale

Informed vs non-informed search

e Besides its own rules, any search algorithm decides where to search next by leveraging
some knowledge

* Non-informed search uses only knowledge specified at problem-definition time (e.g.,
goal and start nodes, edge costs), just like we saw in the previous examples

* An informed search might go beyond such knowledge
* |dea: using an estimate of how far a given node is from the goal

* Such an estimate is often called a heuristic

Estimate of the cost of the optimal path from node v to the goal: i (v)

A*
* The informed version of UCS is called A*

* Very popular search algorithm

It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and

Raphael had to face a practical problem with Shakey (one of the ancestors of today’s
mobile robots)

|
RADIO L | AI
| L

T~ |

CASTER
WHEEL

MOTOR e . Wikipedia SRI Robotics

— 1 | SN SN —

A*
 The idea behind A* is simple: perform a UCS, but instead of considering accumulated

costs consider the following:

Heuristic
(“cost-to-go”)

l
F(n) = g(n) + h(n)

T

Cost accumulated
on the path to n
(“cost-to-come”)

* To guarantee that the search is sound and complete we need to require that the
heuristic is admissible: it is an optimistic estimate or, more formally:

h(n) < Cost of the minimum path from n to the goal

* |f the heuristic is not admissible we might discard a path that could actually turn out
to be better that the best candidate found so far

A*

node v | h(v)
A 10
B 7
C 1
D 3
E 0
F 7
G 2

A*

A

0+10=10

node v | h(v)

RN lwN@Nve il
w

A*

A
0+10=10
B F
5+7=12 6+7=13

node v | h(v)

RN lwN@Nve il
w

A*

A
0+10=10
B F
5+7=12 6+7=13
C D
5+7+1=13 5+3+3=11
node v | h(v)
A 10
B 7
C 1
D 3
E 0
F 7
G 2

l\fk

A
0+10=10
B F
5+7=12 6+7=13
C D
5+7+1=13 5+3+3=11
node v | h(v) /\
10
F G

5+3+3+7=18 5+3+4+2=14

RN lwN@Nve il
N~ O W =~

l\fk

A
0+10=10
B F
5+7=12 6+7=13
C D
5+7+1=13 5+3+3=11
node v | h(v) ® /\
10
F G

5+3+3+7=18 5+3+4+2=14

RN lwN@Nve il
N~ O W =~

l\fk

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13
node v | h(v) ® /\
A 10
B 7 F G
C 1 5+3+3+7=18 5+3+4+2=14
D 3
E 0
F 7
G 2

l\fk

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13
node v | h(v) ® /\
A 10
B 7 F G
C 1 5+3+3+7=18 5+3+4+2=14
D 3
E 0
F 7
G 2

A*

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13

node v | h(v) ® /\ /\

A 10

B 7 F G D E

C 1 5+3+3+7=18 5+3+4+2=14 6+5+4+3=18 6+5+3+0=14

D 3

E 0

F 7

G 2

A*

A
0+10=10
B F
5+7=12 6+7=13
C D D G
5+7+1=13 5+3+3=11 6+3+3=12 6+5+2=13
node v | h(v) ® /\ /\
10
F G D E
5+3+3+7=18 5+3+4+2=14 6+5+4+3=18 6+5+3+0=14

©

RN lwN@Nve il
N~ O W =~

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

node v | h(v)

100

RN lwN@Nve il
o

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:
A

0+10=10

node v | h(v)

100

RN lwN@Nve il
o

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

node v

QEHE-HOAQwW

100

A

0+10=10

/\

B

5+0=5

F

6+100=106

l\fk

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

node v | h(v)
A 10
B 0
C 1
D 0
E 0
F 100
G

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8

l\fk

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
C 1
D 0
E 0
F 100
G 0

l\fk

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
E
Ei é 5+3+4+100+0=112
E 0
F 100
G 0

l\fk

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

A
0+10=10
B F
5+0=5 6+100=106
C D
5+7+1=13 5+3+0=8
(:) ’///,///A\\\\\\\
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
E
Ei é 5+3+4+100+0=112
E 0
F 100
G 0

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

A
0+10=10
B F
5+0=5 6+100=106
C D D G
5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
E
Ei é 5+3+4+100+0=112
E 0
F 100
G 0

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:

A
0+10=10
B F
5+0=5 6+100=106
C D D G
5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
E
Ei é 5+3+4+100+0=112
E 0
F 100
G 0

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:
A

0+10=10

/\

B F

5+0=5 6+100=106
C D D G
5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
E
Ei é 5+3+4+100+0=112
E 0
F 100
G 0

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:
A

0+10=10

/\

B F

5+0=5 6+100=106
C D D G
5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 10
B 0
E
Ei é 5+3+4+100+0=112
E 0
F 100
G 0

A*

* Problem: if we work with an extended list, admissibility is not enough!

* Let’s consider this “pathological” instance:
A

0+10=10

/\

B F

5+0=5 6+100=106
C D D G
5+7+1=13 5+3+0=8 6+3+3=12 6+5+2=13
F G

5+3+3+100=111 5+3+4+0=12

node v | h(v)
A 1(
B 0
E
Ei é 5+3+4+100+0=112
E 0 © A
F 100
G 0

A*

We need to require a stronger property: consistency

For any connected nodes u and v: h(v) < c(v,u) + h(u)

node v

h(v)

c(v,u)

QEHEHOQW =

-~ -
o -

Optimality of A*
f(v) = g(v) + h(v)

f(u) = g(u) + h(u) = g(v) + c(v,u) + h(u) > g(v) + h(v)

consistency
f(u) > f(v) —— fis non-decreasing along any search trajectory

Hypotheses:
1. A* selects from the frontier a node G that

has been generated through a path p
2. pisnotthe optimal pathto G

Frontier /

Given 2 and the frontier separation property, we
know that there must exist a node X on the

.
o

"
.
. .
.

.....
..............

frontier that is on a better path to G ‘ /

f is non-decreasing: f(G) > f(X)
When A* selects a node for expansion, it
A* selected G: f(G) < f(X) discovers the optimal path to that node

Building good heuristics

* A “larger” heuristic is better usually than a smaller one. The trivial heuristic is h(v) = 0.

 The “larger heuristics are better” principle is not a methodology to define a good
heuristic

* Such a task, seems to be rather complex: heuristics deeply leverage the inner structure
of a problem and have to satisfy a number of constraints (admissibility, consistency,
efficiency) whose guarantee is not straightforward

 When we adopted the straight-line distance in our route finding examples, we were sure
it was a good heuristic

* Would it be possible to generalize what we did with the straight-line distance to define a
method to compute heuristics for a problem?

* Good news: the answer is yes

Evaluating heuristics

* How to evaluate if an heuristic is good?

h(v) =0 h(v) = g*(v)
| |
| 2 |
Trivial Trivial
heuristic problem

We’d like to push
this point to the
right. Why?

* A* will expand all nodes v such that: f(v) < g*(goal) — h(v) < g*(goal) — g(v)

* If, forany nodev hi(v) < ho(v)
then A* with h, will not expand more nodes than A* with h4, in general h, is better

(provided that is consistent and can be computed by an efficient algorithm)

* |f we have two consistent heuristics h; and h, we can define

hz(v) = max{hs(v), hi(v)}

Relaxed problems

* Given a problem P, a relaxation of P is an easier version of P where some constraints
have been dropped

P P
Original ~ Removing constraints Relaxed
problem > problem

9(v,u) < g(v,u)
" T

Costs in the Costs in the
relaxation original problem

* In our route finding problems removing the constraint that movements should be over
roads (links) means that some costs pass from an infinite value to a finite one (the
straight-line distance)

Relaxed problems

* Idea:
Define a Apply A* to every Set h(v) = h*(v) inthe
A~ —> - - . .
relaxation of P: P node and get h*(v) original problem and run A*

* We can easily define a problem relaxation, it’s just matter of removing
constraints/rewriting costs

* But what happens to soundness and completeness of A*?

h*(v) < §(v,u) + h*(u) Path costs are optimal

h(v) < g(v,u) + h(u) From our idea

§(U, U) < g(v, U) From the definition of relaxation
h(v) < g(v,u) + h(uw) his consistent

Heuristics example: 8-puzzle

* How to evaluate if an heuristic is good?

7 2 | 4 1 2

5 6 3|1 4| 5

8 | 3 | 1 6 | 7 | 8
Start State Goal State

* h;(v) the number of misplaced tiles

* h,(v) sum of distances of tiles from their goal destination
(Manhattan Distance)

* hiy(v) =8, h,(v) =18, h,(v) =26
* Both heuristics are admissible; the second one is “higher”, so is close to the

actual cost of the optimal path. So it is a better heuristic.

* |f we have two consistent heuristics h; and h, we can define

hz(v) = max{hs(v), hi(v)}

Heuristics example: 8-puzzle

Search Cost (nodes generated) Effective Branching Factor

d IDS A*(hy) A*(ho) IDS A*(hy) A*(h9)

2 10 6 6 245 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 || 3644035 227 73 2.78 1.42 1.24
14 - 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

* h;(v) the number of misplaced tiles

* h,(v) sum of distances of tiles from their goal destination
(Manhattan Distance)

 How to evaluate an heuristic? Compute several instances of the problem and compute the
effective branching factor

(the number of branches expanded by the search strategy during search)
In the table we tested 1000+ instances of the problem.

* h,(v) dominates h;(v) and is 50k better wrt IDS with d=12

Heuristics example: 8-puzzle

* How to evaluate if an heuristic is good?

7 2 | 4 1 2

5 6 3 4 |5

8 | 3| 1 6 | 7 | 8
Start State Goal State

Remember that the relaxed problem adds edges to the state space
e any optimal solution in the original problem is, by definition,
also a solution in the relaxed problem;
* however the relaxed problem may have better solutions if the added edges provide
short cuts
Hence, the cost of an optimal solution to a relaxed problem is an admissible heuristic
for the original problem.

Furthermore, because the derived heuristic is an exact cost for the relaxed problem,
it must obey the triangle inequality and is therefore consistent

Heuristics example: 8-puzzle

* How to evaluate if an heuristic is good?

7 2 | 4 1 2

5 6 3|1 4| 5

8 | 3| 1 6 | 7 | 8
Start State Goal State

How to generate heuristics? We can remove rules / costraints

8:puzzle rules:
A tile can move from square A to square B if:
A is horizontally or vertically adjacent to B and B is blank.

we can generate three relaxed problems by removing one or both of the conditions:
(a) A tile can move from square A to square B if A is adjacent to B.

(b) A tile can move from square A to square B if B is blank.

(c) A tile can move from square A to square B.

References

* Russel S., Norvig P., Artificial Intelligence, a Modern Approach, IIl ED

* LaValle, SM., Planning Algorithms
http://lavalle.pl/planning/

e https://qiao.github.io/PathFinding.js/visual/

e https://www.redblobgames.com/pathfinding/a-
star/introduction.html

http://lavalle.pl/planning/
https://qiao.github.io/PathFinding.js/visual/
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html

Sistemi Intelligenti Avanzati
Corso di Laurea in Informatica, A.A. 2023-2024
Universita degli Studi di Milan

Matteo Luperto
Dipartimento di Informatica
matteo.luperto@unimi.it

mailto:matteo.luperto@unimi.it

